Anemia in Women Peggy Mancuso, Ph.D., CNM

What is blood?

Plasma (60%)

- Water
- Dissolved ions and protein
- Cellular components (40%)
 - -WBCs
 - RBCs
 - Platelets

Erythrocyte Development

- 1. Stem cell
- 2. Early RBC progenitor
- 3. Late RBC progenitor
- 4. Pronormoblast
- 5. Basophilic normoblast
- 6. Polychromatophil
- 7. Orthochromatic normoblast
- 8. Reticulocyte (large cell)
- 9. Mature RBC

What are reticulocytes?

Adolescent RBCs

- 1. Erythropoietin from kidneys
- 2. Bone marrow responds
- 3. Reticulocytes are produced
- 4. Released into circulation

Accelerated RBC production more reticulocytes!

What accelerates RBC production?

- 1. Hemolysis
- 2. Blood loss
- 3. Hemoglobin S disease
- 4. Cancer
- 5. Pregnancy
- 6. Iron replacement in iron deficiency anemia

What if reticulocytes are decreased?

Normal

- 1-2% of RBCs are reticulocytes
- Decreased when bone marrow is not making RBCs
 - Iron deficiency
 - Aplastic anemia
 - Chronic infection
 - Untreated pernicious anemia

What is hemoglobin?

Oxygen carrying protein 2 pairs of polypeptide chains (globins) - 2 alpha chains -2 beta chains Each chain has heme molecule – Heme = iron + protoporphyrin Hemoglobinopathy Abnormal hemoglobin

Types of Hemoglobin (Hb)

Fetal hemoglobin

– Hb F

Hb A

- Adult hemoglobin
- 2 alpha and 2 beta chains
- Hb A_{1c}
 - Hb A with glucose
 - 3-6 % normal
 - Elevated with diabetes

Hemoglobinopathy

Sickle cell

 Hb S – beta chain mutation
 Most common hemoglobinopathy

 Thalassemia

 Deletion or mutation of chain

Red Blood Cell Indices

RBC Hgb Hct MCV MCH ■ MCHC RDW Reticulocytes

Red Blood Cell Count (RBC)

Number of RBCs/cubic ml
3.6-5.0 x 10U/ml
Lower in recumbent position
Exercise/excitement increase
Dehydration increases

Hemoglobin (Hb)

Amount of hemoglobin in blood
30% of RBC is Hb
12-16 g/dL

Hematocrit (Hct)

Volume of RBCs
 Immediate acute loss

 Equilibrium occurs
 HCT will not reflect blood loss

 37-47% by venipuncture
 42-44% by finger stick

Mean Corpuscular Volume (MCV)

Average volume of single RBC Classifies anemia - Microcytic – Normocytic - Macrocytic ■ 80-100 (107) fl/L ■ 80-83 low normal

Mean Corpuscular Hemoglobin (MCH)

Average weight for each RBC
Picograms
26-34 pg
Not used as much as others

Mean Corpuscular Hemoglobin Concentration (MCHC)

Average hemoglobin concentration
 31 g/- 37 dL

Red Cell Distribution Width (RDW)

 Coefficient of variation of red cells
 Anisocytosis

 Variation in cell size

 Normal 11.5-14.5

Reticulocytes

Number of immature RBCsMay increase MCV (large cells)

Other RBC Indices

Serum Ferritin
Serum Iron
Total Iron Binding Capacity
Transferrin Saturation
Serum Folate
Serum Vitamin B-12

Serum Ferritin Body's Storage of Iron Low serum ferritin Iron deficiency First abnormal indice with iron deficiency Normal serum ferritin - Chronic disease Increased serum ferritin - Iron overload Inflammatory diseases - Alcoholism

Iron Indices

Transferrin

- Protein that transports iron
- Measured by total iron binding capacity (TIBC)

Serum Iron

- Amount of iron bound to transferrin
- Transferrin saturation
 - Percentage of serum iron to TIBC
 - 20-50%

Red Blood Cell Folate

Diagnose macrocytic anemia Low folate – Folate deficiency Must be low for > 20 weeks to change cells – Pancytopenia? Low RBC folate - Specific for folic acid deficiency

Serum B-12

Low B-12 Diagnose macrocytic anemia

Classification of Anemia by Etiology

- Decreased healthy RBC production
 - Bone marrow does not produce enough cells
 - Maturational defect in cells

Classification of Anemia by Etiology

Increased RBC loss

 Blood loss

 RBC destruction

 Intrinsic (sickle cell)
 Extrinsic (mechanical cardiac valve)
 Combination of above

Classification by RBC Morphology

Size

Microcytic: decreased MCV

- Normocytic: normal MCV
- Macrocytic: increased MCV

Color

- Normochromic
- Hypochromic

Microcytic Anemias

Iron deficiency
 Thalassemia
 Anemia of chronic disease

Macrocytic Anemias

Megaloblastic – Vitamin B-12 deficiency Folate deficiency Non megaloblastic - Chemotherapy - Liver disease Reticulocytosis – excess of immature cells – Myxedema - chronic hypothyroidism

Normocytic Anemias

Acute blood loss
 Anemia of chronic disease
 Infection
 Medications

Signs and Symptoms of Anemia

Often asymptomatic
Systolic murmur
Hypotension
Glossitis
Chilitis

Signs and Symptoms of Anemia

Dry skin
Thin hair
Pallor
Nail ridges
Pale conjunctiva

Microcytic Anemia Iron Deficiency Anemia

Most common anemia

Normal Iron Metabolism

Ferritin: stored iron

 30% of total body iron
 Found in liver, spleen, and bone marrow

 Transferrin

 Transfers iron from storage to functional pool

Normal Iron Metabolism

Transferrin recognized by target tissues via a specific receptor
 Cells with greater iron need express greater number of receptors
 Iron internalized by endocytosis

Normal Iron Metabolism

 Apoferritin traps iron as part of storage complex (ferritin)
 Erythropoietin secreted by kidneys

 Stimulates RBC production

Lab Findings

Lab Values

Smear

- Hypochromic
- Microcytic
- Anisocytosis
 - Ani Greek for unequal
 - Abnormal sizes of RBCs
- Poikilocytosis
 - Poikolo Greek for irregular
 - Abnormal shapes of RBCs

Lab Values

Serum ferritin

 <15 mcg/L

 TIBC

 Rises

 Serum iron

 <30 mcg/dL

Evaluation of Iron Status

Serum Ferritin

- Indicates total body iron stores
- < 15 mcg/L deficiency</p>
- Increase
 - Systemic inflammation
 - Infection
 - Liver disease

Evaluation of Iron Status

Transferrin Saturation

- (Serum iron)/ total iron binding capacity (TIBC)
- Saturation < 20%
 indicates deficiency

Signs and Symptoms

 Fatigue
 Tachycardia
 Shortness of breath
 Left ventricular hypertrophy
 Angina

Iron Deficiency Anemia 30% of Diagnosed Anemia Inadequate intake Malabsorption Excessive blood loss - Menstrual -GIIncreased requirements - Pregnancy or lactation

Differential Diagnosis

Anemia of chronic disease

 Normal or elevated ferritin

 Thalassemia

 More microcytosis
 Normal iron parameters

 Iron deficiency responds to iron therapy

Oral Iron Therapy

Iron dose (adults) – Recommended dose = 200mg/day - Duration = 3 months - Will respond in 10 - 21 days Ferrous sulfate preferred Adverse effects ■GI complaints

Comparison of Oral Products

Product	% Iron	Daily dose	Fe/day
Ferrous sulfate	20%	325mg tid	195mg
Ferrous fumarate	33%	200mg tid	198mg
Ferrous gluconate	11%	600mg tid	198mg

Administration of Oral Iron

- Empty stomach if no GI distress
 Administer with meat, fish, or Vitamin C foods
- Keep out of reach of children

Parenteral Iron Therapy (Iron Dextran)

- Noncompliance or malabsorption
- Single dose IV
 - Dose: 500-3000 mg
 - Iron content = 50mg/ml
 - Total mg Iron=[0.0442 x (desired Hgb-Obs Hgb) x IBW + (0.26 x IBW)] x 50

Iron-Rich Foods

Animal protein

 Heme iron

 Deep green
 vegetables
 Iron-fortified cereals

Parenteral Iron Therapy (Iron Dextran)

- Side effects anaphylaxis
 - Arthralgia
 - Myalgia
 - Flushing
 - Malaise
 - Fever
 - Allergy/anaphylaxis
- Give test dose: 25mg (0.5ml)

Follow-Up

- Repeat CBC 2-4 weeks after therapy initiated
- If no response
 - Evaluate for other anemia

Anemia of Chronic Disease

 Microcytic anemia
 Normocytic/normochr omic anemia
 25% of all diagnosed anemia

Chronic Diseases Causing Anemia

Chronic infection or inflammation
HIV
Cancer/malignancy
Liver failure
Chronic renal failure

Decreased erythropoietin

Clinical Findings

- Signs and symptoms of anemia
- Labs
 - 1. Low serum iron
 - 2. Low TIBC
 - 3. Normal or increased serum ferritin
- Dialysis
 - 1. Low folate
- GI blood loss
 - 1. Positive guaiac

Further Lab Findings

- 1. Hct rarely below 25% (Except with renal failure) 2. MCV normal or slightly low **RBC** morphology normal 3. 4. Reticulocytes normal/low 5. Serum ferritin normal/low
- 6. Serum iron low
- 7. Transferrin saturation very low

Common Features

- Hypo-proliferative bone marrow
- Low serum erythropoietin

Goals of Therapy

Increase Hct to target 30% to 36%
 Decrease morbidity and mortality
 Decrease transfusion requirements

Erythropoietin

- 50-100U/kg TIW, IV or SC
- Reduce dose when:
 - 1. HCT approaches 36%
 - 2. HCT increases > 4 points in 2 weeks
- Increase dose when:
 - Hct does not increase > 5-6 points after 8 weeks
 - 2. Hct is below target

Side Effects

Hypertension (25%)ArthralgiaNausea

Factors Decreasing Response to Therapy

- Iron deficiencyBlood loss
- Infection

Iron Supplementation with Erythropoietin May be PO or IV PO: 200mg elemental iron daily IV: 100mg for 10 consecutive treatments

Avoid enteric-coated formulations

Lead Poisoning

Microcytic Anemia

Lab Findings

Hb 8-13 or lower
HCT 20-30%
Low MCV
Low MCHC
Slightly elevated reticulocytes

Smear dimorphic

- Normal cells
- Hypochromic cells
- Coarse basophilic stippling
- Elevated lead levels

Symptoms Chronic Toxicity: Serum Lead 25-50 mcg/dl

Dark line (lead sulfide)

- Gums around the teeth
- Abdominal pain
- Constipation
- Vomiting
- Peripheral neuropathy
- Muscle weakness

Legal Aspects

Notify OSHA and remove worker 1. Serum lead > 602. Serum lead $> 50 \times 3$ Severe poisoning 1. Coma 2. Convulsions 3. Serum lead > 70

Thalassemia

Autosomal Recessive Disorder

Thalassemia

Microcytosis out of proportion to degree of anemia Lifelong Family history Abnormal RBC morphology - Microcytes - Acanthocytes - Target cells

Thalassemia

Alpha and beta thalassemia
 Genetic mutations
 Occur in areas where malaria was endemic

Alpha Thalassemia

China, Philippines Malaysia, Thailand, Cambodia, Laos, Vietnam, Burma, India, Sri Lanka, African and American blacks

Alpha Thalassemia

Silent carrier
 Thalassemia minor
 Hemoglobin H disease
 Hydrops fetalis

 Incompatible with life

Silent Carrier

3 alpha globulin genes, 1 alpha globulin gene affected
 Normal hematocrit
 No clinical or hemoglobin abnormality
 Can only be detected by DNA studies
 No treatment

Alpha Thalassemia Minor (Trait)

2 alpha globulin genes normal 2 alpha globulin genes affected Hct 32-40% Hgb normal or decreased RBC normal or increased ■ MCV below 80 MCH below 26

Alpha Thalassemia Minor

Normal hemoglobin electrophoresis RBC morphology - Microcytosis – Hypochromic - Aniso/poilokocytosis Iron studies normal Remember may have a combination of

anemias!
Alpha Thalassemia Minor in Pregnancy

Non-black

Screen father of the baby
Black population

Alpha thalassemia major not possible

Consult for maternal Hb below 10
If present in both parents

Refer for genetic counseling

Hemoglobin H Disease

One alpha globulin gene normal Three alpha globulin genes affected Hct 22-32 Hgb 7-10 ■ MCV <26 ■ MCH<80

Reticulocytosis - 5-10% Microcytosis Hypochromia Targeting Misshapen red cells Hgb electrophoresis - 5-30% Hgb H

Symptoms of Hb H Disease

Hepatosplenomegaly Gallstones Transfusion-dependent Milder in blacks Anemia worse during pregnancy Refer to physician Counseling needed

Alpha Thalassemia Major

 No alpha globin genes are normal
 Hydrops fetalis present
 Does not survive

Beta Thalassemia

- Point mutations rather than large deletions
 Beta0 or Beta+
 Alpha chains unstable
 People of Mediterranean origin
 - Greeks 1:10
 - Italians 1:10
 - Asians 1:25
 - American blacks 1:50

Beta Thalassemia

Thalassemia major

 Homozygous B0 or B+
 <10% Hgb A

 Thalassemia intermedia

 Mild Homozygous B+
 <30% Hgb A

Thalassemia minor

- Heterozygous B0
- Heterozygous B+
- 80-95% Hgb A

Thalassemia Major

Severe hemolytic anemia
Regular transfusion program
Iron overload (hemosiderosis) common
Shortened life span

Thalassemia Intermedia

Blacks may have milder clinical course
 Refer to physician for care

Thalassemia Minor

- Heterozygotic
- Lifelong microcytic, hypochromic anemia
- Severe anemia unusual
- May be asymptomaticSplenomegaly?

Thalassemia Minor

MCV<80
MCH<26
Abnormal peripheral smear
Elevated Hgb F?
No treatment needed

Thalassemia Minor

 If pregnant, screen father of baby
 Genetic referral if father has hemoglobinopathy
 If coexistent iron deficiency

 Treat according to protocol

Sideroblastic Anemias

"Sidero" is Greek for Iron "Blast" is an immature cell RBCs without Iron

Sideroblastic Anemias

- Can not incorporate iron into RBC
- Lack enzyme
- Genetic, idiopathic, or acquired
 - Drugs or Toxins
- Ringed sideroblasts present in marrow (Nucleated, immature RBC with iron granules)
- Hgb 6-10
- Microcytic, normochromic or normocytic, normochromic

B₁₂ and Folate Deficiency

Macrocytic Anemias

Vitamin B₁₂

Only source is diet
 3-5 years before deficiency apparent

 Diet deficiency seen only in vegans

 Bound to intrinsic factor
 Transported to plasma
 Transcobalamin II needed to reach cells

Vitamin B₁₂ Deficiency

 Decreased production of intrinsic factor

 Pernicious anemia
 Gastrectomy

Vitamin B₁₂ Deficiency

Decreased absorption of B-12

- Fish tapeworm
- Blind loop syndrome
- Surgical resection
- Cohn's disease
- Pancreatic deficiency

Inadequate intake (rare)

Clinical Findings

Weakness
Weight loss
Beefy red tongue (glossitis)
Numbness
Ataxia
Memory loss

Pallor
 Paresthesias
 Decrease reflexes
 Depression
 Decreased vibration or position sense

Diagnosis

MCV 110-140

MCV may be normal in presence of another microcytic anemia

- Macro-ovalocytes, multi-lobed neutrophils
- Diagnosed through serum B-12<100 pg/L</p>
 - Shilling test

Decreased absorption of B-12

Differentiate from folate deficiency

B₁₂ Deficiency

Gradual development over 1-3 years
 Treatment (Cyanocobalamin)

 LD: 100mcg/d IM x 3-5 days
 MD: 100mcg IM q2-4 weeks

B₁₂ Deficiency

Response rate

 Reticulocytes and RBCs
 Similar to iron deficiency
 Neurologic signs and symptoms
 6-12 months (If less than 6 months duration)
 Other signs and symptoms
 1-2 weeks

Folate Deficiency

Clinical findings: similar to B12 deficiency
 No neurologic findings
 Macro-ovalocytes
 Hypersegmented neutrophils
 Normal serum B₁₂
 Reduced folate

Folate Deficiency

Daily requirements

- 50-100 mcg
- Dietary deficiency most common cause
- Diagnosis
 - RBC folate test of choice
- Gradual development of anemia
 - 1-5 months
- Treatment

1mg/day po x 2-3 weeks

Causes of Folate Deficiency

- Dietary deficiency
 Decrease absorption

 Topical sprue
 Drugs
 - Phenytoin, Sulfas

Causes of Folate Deficiency

Increased requirement Chronic hemolytic anemia – Pregnancy - Exfoliative skin disease Loss of folate – Dialysis Inhibition of reduction to active form - Methotrexate

Other Causes of Macrocytosis

- HIV treated with zidovudine
- Hypothyroidism
 - Mild macrocytosis
- Alcoholism
 - Folate deficiency and liver disease
 - Target cells in peripheral blood

Sickle Cell Trait

Autosomal Dominant Anemia

Sickle Cell Trait

One gene normal hemoglobin
One gene for hemoglobin S
34-54% hemoglobin S
Rarely anemic
Blacks - 8%
Also in Africans, Italians, Indians

Associated Conditions

Bacteruria
 Hematuria
 Hyposthenia

 Diminished strength

 Splenic infarction

 High altitude

Symptoms

Generally asymptomatic
 History of bladder/kidney infections
 May confuse diagnosis of other coexisting anemia

- Diagnosed by Hb electrophoresis
 - 34-54% Hb S
 - Sickledex positive
 - Normal iron studies

Plan of Care

- 1. Screen all black pregnant women
 - If positive for trait, screen father of baby
- 2. No treatment needed for trait alone
- 3. Pregnant women with sickle cell trait
 - Urinalysis and culture each trimester
 - Educated on S/S UTI
 - Genetic counseling if father has hemoglobinopathy

Image acknowledgments: *Black, McKay, Braude, Jones, & Margesson (2002) Obstetric and Gynecologic Dermatology *Pathguy.com *Skinema.com *Med.cornell.edu *Hedscape.com *Underspital.com

My friend My family